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ABSTRACT

In most hydrodynamic cases, the existence of a turbulent flow superimposed on a mean flow is caused by a
shear instability in the latter. Boussinesq suggested the first model for the turbulent Reynolds stresses u;u; in
the form

wu; = —2v,85;

which physically implies that the mean shear §;; is the cause (or source) of turbulence represented by the stress
u;u;. In the case of solar differential rotation, exactly the reverse physical process occurs: turbulence (which
must pre-exist) generates a mean flow which manifests itself in the form of differential rotation. Thus, the
Boussinesq model is wholly inadequate because in the solar case, cause and effect are reversed. One should
envisage the sequence of cause and effect relationships as follows:

Buoyancy — Turbulence - Mean Flow (Differential Rotation)

where the source of turbulence has been identified with buoyancy which is present in stars for reasons unre-
lated to the fact that it may ultimately generate a differential rotation. An alternative way of interpreting the
sequence above is by saying that small scales (buoyancy) have more energy than large scales (mean flow, dif-
ferential rotation), quite contrary to most situations usually encountered in turbulence studies. Thus, the rela-
tion between buoyancy, Reynolds stresses and differential rotation must be viewed in a fundamentally different
physical light from most standard hydrodynamic flows in which either the mean flow is the cause of turbu-
lence (most laboratory and engineering cases) or both mean flow and buoyancy conspire to generate turbu-
lence (the boundary layer of the Earth’s atmosphere). Since the Boussinesq model is inadequate, one needs an
alternative model for the Reynolds stresses.

We present a new dynamical model for the Reynolds stresses, convective fluxes, turbulent kinetic energy,
and temperature fluctuations. The complete model requires the solution of 11 differential equations. We then
introduce a set of simplifying assumptions which reduce the full dynamical model to a set of algebraic Rey-
nolds stress models. We explicitly solve one of these models that entails only one differential equation. The
main results are

1. Shear alone, namely the Boussinesq formula, u;u; = —2v,S;;, cannot give the expected result since
it describes a flow in which turbulence is generated by shear, while in the solar case shear is generated by
turbulence.

2. Shear and buoyancy alone do not yield acceptable results.

3. Agreement with the data requires the nonlinear interaction between vorticity and buoyancy.

4. The predicted u,u, agrees very closely with observational data (Gilman & Howard 1984; Virtanen
1989).

5. The model predicts the magnitude and latitudinal behavior of the three components of the turbulent
kinetic energy, two of which (43 and u3) could be compared to existing data.

6. The maximum production of shear by buoyancy is predicted to occur at a latitude of ~40°.

7. The model predicts that 2.5% of the buoyant production rate is required to generate and maintain solar
differential rotation.

8. The model predicts four independent anisotropic (turbulent) viscosities v,,, Vu, V.4 and v,, which
depend on latitude, as well as three independent anisotropic (turbulent) conductivities, x,,, 24, and x5 which
also depend on latitude (the present numerical results are restricted to radial temperature gradients).

9. The degree of anisotropy in the turbulent viscosities, measured by the parameter s, is found to depend
on latitude and its value is in accordance with the empirical value of ~1.3.

10. The buoyancy timescale t, = [(9/H XV — V,)]~'/? predicted by the model is in agreement with the
results of stellar structure models.

11. The so-called A-effect is naturally (and unavoidably) predicted by the model as a result of the presence
of vorticity: while shear depends only on the derivatives of Q, vorticity also depends on Q itself.

The overall agreement with the data is obtained with a model that is neither phenomenological nor one
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that requires a full numerical simulation, since it is algebraic in nature. The new model can play an important
role in understanding the complex physics underlying the interplay between solar differential rotation and
convection, as many physical processes can naturally be incorporated into the model.

Subject headings: convection — hydrodynamics — Sun: interior — Sun: rotation — turbulence

1. INTRODUCTION

The search for the physical mechanism responsible for the
transport of angular momentum in a differentially rotating star
has a long history that began with the quantitative analysis of
Wasiutynsky (1946), Biermann (1951), Mestel (1961), Kippen-
hahn (1963), and others. For a detailed discussion of this
subject, see Gilman (1974), Durney (1987), Riidiger (1989), and
Spruit, Nordlund, & Title (1990). Today, it seems fairly gener-
ally accepted that the angular momentum transport is contrib-
uted in large measure, if not entirely, by the Reynolds stresses
u;u;. Thus, one needs a reliable formulation of the Reynolds
stresses as a function of the mean field variables such as the
rotational angular velocity Q(r, ), as well as of the turbulence
variables, such as the turbulent kinetic energy e and its rate of
dissipation, € which are often combined into a turbulent vis-
cosity v, ~ e?/e ~ et, where 7 is the characteristic time scale of
turbulence. It seems fair to say that as of today no a priori
derivation of the Reynolds stresses is available since all formu-
lations are still phenomenological in nature (Kichatinov 1986,
1987, 1991; Durney 1987, for a recent review see Stix 1987,
1989). For example, in Kichatinov and Durney’s models, which
are the most advanced formulations presently available, the
nonlinear interactions, which are at the heart of the turbulence
problem, are treated with a relaxation timescale a’ la mixing
length theory.

Numerical simulations of the basic governing equations are
emerging as an important new tool: of these, direct numerical
simulations (DNS) are of limited applicability since they
cannot deal with the Reynolds numbers Re and the Prandtl
numbers ¢ typical of stars, that is Re ~ 10'*, ¢~ 107°
(Massaguer 1990). In fact, DNS calculations can only treat
values like Re ~ 10° and o ~ 1. On the other hand, large-eddy
simulations (LES) can treat arbitrarily large Re, but are known
to depend sensitively on the modeling of the unresolved
subgrid-scales, for which there is still no completely satisfac-
tory model. Today, most LES calculations employ a subgrid
scale model first derived by Smagorinsky (1963) which was
designed for shear rather than buoyancy dominated flow as is
the case in stars. No subgrid model has yet been proposed
which includes all the physics relevant to stellar interiors such
as buoyancy, stable stratification (the overshooting region),
rotation, etc. (see, however, Canuto 1993).

However, even when a physically complete subgrid-scale
model will become available, LES will still remain a computa-
tionally demanding tool to be used parsimoniously, and thus,
an alternative approach to the problem is of great value. Since
phenomenological models, which have played an important
historical role for over 30 years, seem to have exhausted their
fruitfulness not ultimately because the large number of adjust-
able parameters severely hinders their predictability power, a
more fundamental approach to the Reynolds stress is required
which must be intermediate between the phenomenological
models and the emerging numerical simulations.

In this paper we present a new model for u;u; and the flux
u; 0 that includes the three most important physwal processes:
shear vorticity, and buoyancy. The complete model for the tur-
bulence and mean variables contains: five differential equa-

tions for the tensor u;u;, three differential equations for the
fluxes u; 0, one dlﬁ‘erentlal equation for the turbulent kinetic
energy e, one differential equation for the temperature fluctua-
tions 6%, and one for the dissipation rate of turbulent kinetic
energy €. As these equations depend on the mean fields, there
are, in addition three differential equations for the mean veloc-
ity U,, one differential equation for the mean temperature T,
and one differential equation for the z-component of the mean
angular velocity L,. The solution of these equations would
yield all the mean and turbulent variables of interest as func-
tions of radius r and polar angle 6.

However, even if this complete model were solved, it would
yield a wealth of information which is probably in excess of
what is known from observations. In addition, since the main
objective of this paper is to emphasize the completeness of the
physical components of the Reynolds stress model to be pro-
posed, rather than fine-tuning the independent turbulence vari-
ables e and 7 (a problem which, however, presents no a priori
difficulty), we shall introduce a hierarchy of models of varying
complexity. To clarify this important point, consider the func-
tional dependence of the stresses and fluxes on the mean and
turbulence variables

u u _f(Slj’ Rup ﬁ;le9 €, 9 ) ’ (1)
“i0 = g(Sij’ Rij, Bile, €, 92) . )]
Here, the mean variables are the mean shear
ou; oU;
Sy = <6x + Bxi> ’ (32)

the mean vorticity

oU; (7U
R.. =
Y <0x ox; ) (39)

and the mean temperature gradient

oT oT
@)

As we shall show in what follows,

69 59

Q 0Q
R;; ca—+d%+eﬂ (5)

that is, S;; depends only on the derivatives of Q while the
vorticity R;; depends also on Q itself and thus is directly related
to the A-effect (Riidiger 1989). Also f8; represents temperature
stratification: in the case of §; > 0, stratification is unstable,
the convective flux is positive and buoyancy acts like a source
of turbulence; for §; < 0, the stratification is stable, the con-
vective flux is negative and buoyancy acts like a sink for
turbulence.

As for the turbulence variables, there are four: e, the turbu-
lent kinetic energy TKE; € the rate of dissipation of TKE; 62,
the turbulent temperature variance and e,, its rate of dissi-
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pation. However, since the latter is usually considered to occur
on a timescale 7y = 6*/€, which is proportional to T = 2e/e, we
have not written it explicitly in equations (1) and (2).
The separation in equations (1) and (2) of the dependence of
u;u; and u; § on the mean and turbulence variables, is of great
conceptual importance; in fact, one of the principal results of
this paper will be to show that of the three possible models

=£(S;;, 0, 0le, ¢, 67), ©6)
_=f(S,,, R;,0le, € 07, (7)
wu; =f(Si;, Ryj, Bile, € 67), (8)

and analogous expressions for u; 0, only the last model yields a
horizontal stress u,u, in accordance with observational data,
as we shall show in § 8.1. In particular, we will show that
without the presence of buoyancy and its interplay with R,,,
the functional dependence of u;u; on the colatitude 6 is in
strong disagreement with observ_a_tions, irrespectively of how
the turbulence variables e, €, and 02 are treated. Based on these
general results, we have considered several versions of the com-
plete model (called M1) in order of decreasing complexity in
the way the turbulence variables e, €, and 0* are treated but
with the same full dependence on the large-scale variables S;;,
R;;, and B;. These algebraic Reynolds stress models are as
follows: o

1. In the M2 model, u;u; and ;6 are given in algebraic form,
while e, €, and 67 are obtamed from the solution of three differ-
ential equations;

2. The M3 model also has algebraic expressions for u;u;
and u; 0, while e and € obtained from the solution of two d1f-
ferent1a1 equations; the temperature fluctuation 67 is treated
algebraically; o

3. The M4 model has algebraic expressions for u;u; and u; 0
which are simpler than those in the M3 model, for we neglect
the nonlinear contributions to the pressure strain correlation
tensor and pressure-temperature correlation vector; it also has
two differential equations for e and €; and finally,

4. The M5, or operational model, is a simplified version of
the M4 model in that the differential equation for e is reduced
to an algebraic equation due to the neglect of the diffusion
term. There is only one differential equation, that for €.

Model M5 naturally yields a Reynolds stress uyu, in very
good agreement with solar data (Gilman & Howard 1989;
Virtanen 1989; Goode 1991); the qualitative behavior of the
other components of the Reynolds stress tensor and of the
convective fluxes are found to be in agreement with numerical
simulation data (Gilman & Glatzmaier 1981; Glatzmaier 1984,
1985a, b, 1987; Riidiger & Tuominen 1987, 1991; Tuominen &
Riidiger 1989; Pulkkinen et al. 1991, 1993) and phenomeno-
logical models (Durney 1991).

2. REYNOLDS STRESSES

So as not to encumber the presentation with excessive math-
ematical details, we relegate the derivation of the basic equa-
tions to Appendix A. Once the fluid dynamics equations are
averaged over an infinite ensemble of realizations, one obtains
the equations for the ensemble mean fields. If v; = U; + u; is
the total velocity field, with U; and u; the mean and fluctuating
fields, respectively (such that u; = 0), Reynolds averaging
(denoted by an overbar) yields the following equation for U,
(we will take the flow to be incompressible, so that p = 1),

DU _(, LOP\, 2 (U )\ ...
pr .\ ox;)  0x; Vox, MMi) T ©)

J
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where g; is the gravity vector and P is the mean pressure. This
is equation (A6) where we have added the kinematic viscosity
term for completeness. A similar calculation gives the equation
for the mean temperature T (see eq. [A8]):

DT 0 orT  —;
E=é;l< ax ué)) (10)

where y = K/(pc,), K being the thermal conductivity. Finally,

the equation for the z-component of the mean angular momen-
tum L, = U,;n,;, where n; = (—y, x, 0), is

DL,

Dt

0 ou;
—9i '11 ax [W?; x ’7(“ u + Pélj)] (11)
where in equations (9)—(11)

D ¢ 0
—=—+U,—. 12
Dt ot 0, (12)
Equations (9)—(11) for the mean fields U;, T, and L, are similar
in form to the equations describing the laminar flow: turbu-
lence enters through the Reynolds stresses and convective fluxes
wu;, u0. (13)

i%jo

In the next section, we derive the dynamic equations satisfied
by the variables (13).

3. THE COMPLETE MODEL FOR THE REYNOLDS STRESSES
AND CONVECTIVE FLUXES, M1

Using the Reynolds stress method to treat the fluid
dynamics equations (Canuto 1992, 1993) in the presence of
buoyancy and shear, one can derive the equations satisfied by
the turbulent quantities. The resulting equations are given by
equations (A16), (A20), (A23), and (A26), respectively, and are
summarized here:

1. Reynolds stresses u;u;

D__ o ____ ___dU; ___0U;
Dr it + 6__xk TRTATAE S THTN 6_x: — U a—xk
+ A0+ Au 0+ T — €. (14)
2. Turbulent kinetic energy e = q_2/2, where ¢% = u;u;:
D 1 —— N
De & 5 T+ b aU+/1u0—e (15)
ax ) 0x;
3. Convective fluxes u;0:
D ouU;
_ 0 T nz HO
D u; +6xj = Bu;u; ox, u9+10 + n;
(16)
4. Temperature variance 62:
1)02 d — . ®
0x 02=2Biui0+XF_2€0' (17)

The pressure-strain correlation tensor IT;; and the pressure-
temperature correlation vector IT? entermg equations (14) and
(16) are given by equations (A27)—(A39) and equations (A41)-
(A43), whereas the third-order moments appearing on the left
sides of equations (14)—(17) are discussed in Appendix C.
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5. Turbulent timescales t and t,:
2e 0?
=—, =—. 18
T p To & (18)

6. Dissipation rate of turbulent kinetic energy e:

De 0 € — — €’
E+a_xi(€—ui)=;(_cluiujsi‘i+cs liuie)—CZ:. (19)
The constants ¢ will be discussed later.
7. Dissipation rate of temperature fluctuations €,

5690_

Finally, equations (14)-(20) must be supplemented by equa-
tions (9)—(11) for the mean fields.

Q| m

(20)

€0=

4. THE PHYSICS OF THE MODEL

Before discussing the solution of equations (14)—(20), it is
important to discuss their physical content. Consider, for
example, the equation for the turbulent kinetic energy e, equa-
tion (15): the first term on the left corresponds to the time
dependence Oe/ot plus the advection term U, de/0x;; the next
term corresponds to the “diffusion” of e; in fact, it is the
divergence of the flux of kinetic energy (a third-order moment):

F¥ = 1q%u, . (21a)

This term is often referred to as a diffusion term because a
widely used approximation, based on the use of an analogy
with kinetic theory, suggests that

— 0g>

qzui =-D t aixl s
which assumes that the kinetic energy flux occurs predomi-
nantly along the gradient of the kinetic energy g2; D, is a
“turbulent diffusion ” coefficient, usually taken as the product
of a mixing-length times an rms velocity. Introducing equation
(21b) into equation (15), the second term assumes the form of a
diffusion term. In this paper we shall not make use of equation
(21b) because in turbulent convective regimes it has proven to
be incorrect (Canuto 1992). Rather, in Appendix C we derive
the dynamic equations for the third-order moments and
propose a procedure to solve them. This will also help to high-
light the limitations of the down-gradient approximation (eq.
[21b]).

In most flows, the first term on the right side of equation (15)
is a source of kinetic energy stemming from the interaction of
the Reynolds stresses u;u; with the shear S,;: energy is
extracted from the mean flow and fed into turbulence. In the
approximation first suggested by Boussinesq (1877), one writes

wuj=—2,8;, (22a)
so that, with §? = 25, S,

(21b)

— U Sy = v, 52 . (22b)

Since v, ~ er, the right-hand side of equation (22b) can also be
written as

| &

e1S? ~ (22¢)

T
e
T

~

s
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i.e., the rate of generation of kinetic energy de/dt is proportion-
al to ¢/T,, where T, is a characteristic timescale of the shear,
multiplied by the efficiency factor 7/T, representing the degree
of synchronization between the internal frequency of turbu-
lence 1/ and the external “ beating frequency ” 1/T..

In the case of unstable stratification, the next term in equa-
tion (15), A, u; 6, is positive, and is thus also a source. Here too,
if we assume the simple approximation (in analogy with eq.
[22a]) '

u0=xp, (22d)
where f; is defined in equation (3c), we obtain
A 0=y, (22e)
where
7 ! = (ag: B)'? (22f)

is the buoyancy frequency, and « is the volume expansion coef-
ficient. Since y, oc e, we obtain in analogy to equation (22c)

2 e 1
et|N 'OCTLT},’ (22¢)
where 7/T, is the efficiency factor due to buoyancy.

Finally, the last term in equation (15), €, represents the rate
of dissipation of kinetic energy. It must be stressed that,
although energy is dissipated at the smallest scales where vis-
cosity is most effective, € is not determined by the kinematic
viscosity; the latter only determines the length scale at which
dissipation occurs, while the amount of energy to be dissipated
is determined by the large scales, i.e., ultimately by the source
itself. Thus, the value of € is not governed by the small scales or
by the magnitude of the viscosity. This is a direct consequence
of the fact that the nonlinear interactions conserve energy and
thus, the energy (or power) fed to the system at the largest
scales cascades unchanged (in magnitude) to the smallest scales
where finally it is dissipated into heat.

To further clarify this point, integrate equation (15) over all
space to obtain (the volume average is represented by angle
brackets)

C—wu; S + Au,0) = <€) (23a)
or
P=<e>, (23b)

which expresses the fact that production equals dissipation
globally. With this interpretation, equation (15) can be written
schematically as

de

o + advection = diffusion + production — dissipation .

(23c)

A similar interpretation holds for equations (14), (16), and (17).
As one can notice, the equations for u;u; and u; 6 contain
two additional terms, namely the pressure-strain and pressure-
temperature correlations IT;; and II{. These terms, the con-
struction of which is one of the most difficult parts of the entire
problem, must first be understood in their physical content.
Pressure forces do not exchange energy among eddies in spite
of representing nonlinear interactions. Rather, given an eddy
having a specific size and energy, pressure forces tend to equal-
ize the energy content of each of its components, and thus
maintain isotropy. Thus, one would expect that in the case
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i = j = 3, the first contribution of IT5; in equation (14) would
be of the form

Dw? 1/, 1,
w2 _Z 24
Dt + T<W 3‘1>+ ) (24a)

that is, if one begins with a value of w? larger than the equi-
partition value q*/3, the 1, terms act like a sink and decreases
the value of w?; on the other hand, if w? is too small with
respect to g2/3, I1,; acts like a source and increases w?. Based
on these physical considerations, Rotta (1951) first proposed
that IT;; should contain a term of the form

I; ct™'by;, (24b)
called the “ return-to-isotropy,” where the anisotropy tensor is

That is, the restoring force prov1ded by II;; is assumed to be
proportional to the degree of anisotropy 1tse1f, and thus the
linear dependence of IT;; on b;;. Since the pioneering work of
Rotta, the pressure-strain and pressure-temperature corre-
lations have been the subject of several studies and the topic is
still being studied today (Speziale, Gatski, & Sarkar 1992),
although there seems to be a fair consensus that the most
relevant features have been captured by the latest formula-
tions, which are given in equations (A27) and (A41):

I; = 2c v 'b;; — g eS

ij T % Eij —oy,Z;+ (1- ﬂS)Bij

0 i
— pu; + — pu; + II,(NL
+ ox, pu; + o, pu; + I;{NL) , (25a)

3 5
oz3(SU + = 3 R,j>u [Z}
0 — 0
+ P pd + IT{(NL) , (25b)

where the detailed expressions for the nonlinear contributions
IT,(NL) and IT)(NL) are given in equations (A27b)—(A29) and
(A41a)-(A43). To gain physical insight into equation (25a),

M =f,1 %0 + 9,4 0

consider the trace of IT;;, i.c.,
o __ 0
II.. =2 — pu, ~ — Fke

where the last expression follows from the fact that the pres-
sure is proportional to the kinetic energy. Thus, the diagonal
part of I1;; has the same physical 1nterpretat10n as the diffusion
term, whlch explains its presence in equation (15).

Next, consider the terms Z;; and Z;;. Using equations (14)
and (15) to construct the differential equation for the anisot-
ropy tensor b;; defined in equation (24c), and keeping only the
terms which are relevant to the present discussion, we derive
after some simple manipulations

Dby

1
Dt u_gnkkaij) +-, (263.)

=—Z;+Z;) - (II
where the first two production terms in equation (14) are now
represented by the traceless tensors
zu = Slk ka + Sjk bxk
Zi; = Ryby; + Ry by —

Skm bkm > (26b)
Séij Ry biem - (260)
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In equation (26a), the combined action of Z;; and Z;; represents
production of b;; which is anisotropic smce, for example, the
production of b11 is contributed not only by diagonal inter-
action terms such as b,;S,;;, but also by off-diagonal inter-
action terms such as

byi2812 +b38;3 and b, R, + b3R5,  (26d)

which is particularly important in the case of differential rota-
tion, since as we have already stated, the tensor §;; contains
only derivatives of Q, while R;; entails Q itself, thus contrib-
uting to the well-known A-effect (§ 9). Since, as we have dis-
cussed, pressure forces tend to modulate anisotropies in
general, it is clear that the presence of IT;; in equation (26a) will
tend to modulate the production term, the net result being that
using equation (25a), equation (26a) becomes

Db;;

Tt’+ = —(1—ay)Z; - (1
so that the final result is that the anisotropic production X;;
and Z;; are reduced by the fractions (1 — ;) and (1 — a,),
respectlvely A similar interpretation holds for the pressure-
temperature correlation.

5. ALGEBRAIC REYNOLDS STRESS MODELS (A-RSM)

The solution of the full model, in conjunction with a stellar
structure code, would yield all variables that are important for
the study of the interplay between convection and rotation and
which Schatzman (1991) has repeatedly called attention to.
However, before one tackles the whole problem, one must
show that the model passes a direct test: the correct prediction
of the Reynolds stresses at the surface of the Sun for which we
have measurements. The model we use has no adjustable
parameters and therefore we have no way of forcing the
outcome, a property that we consider to be a significant
strength. We will assume that the mean velocity and tem-
perature fields are given, and we will consider the solution of
the following algebraic Reynolds stress models, the derivation
of which from the complete Reynolds stress model is given in
Appendix B:

—a)Z;;+ 0, (26e)

5.1. Model 2
Reynolds stresses:
AbU = -—%‘Ees,-j + ﬁs fB"j - (1 - al)TZU
— (1~ a)iZ; — dINL), (27a)
where
P DS,

AEA0+A1;, A0=2c4+2cz—4+<s*) Dt

A, =4— 2%, (27b)
1

c}‘E-};(clPs+cst), P=P +P,, (27¢)

and where P, and P, are the production rates of shear and
buoyancy defined as

= -bijsij , Py= )“iui—o‘ (27d)

The constants are given in Appendix D
Convective fluxes u; 6:

/2 —
Ay u, 0= <-§ etd; + tbij>ﬂj + (1 —y,)tA,0%

2

— tIIYNL) + = L 5 Xt 66 su0, (28a)
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where the matrix A;, is given by
Ay = (fi + B)oy + (1 — 3a3)tSy + (1 — Fa3)tRy . (28b)

Thus, the complete Model 2 is given by equations (27)—(28)
together with the three differential equations (15), (17) and (19)
for e, 6, and e.

5.2. Model 3
Model 2 can be further simplified by changing equation (17)
from a prognostic equation to a diagnostic equation by
neglecting the time derivative and the third-order moments:
using equation (20), we obtain
0% = C; 0, (292)
where
C, =cdl + Pe 'c/cy), (29b)
and Pe is the Peclet number defined in equation (B14). Thus,
equation (28a) becomes
az

2 “i >
6Xj

— 2 1
Aik uko = (3 eT(Sij + Tbu>ﬂj — TH?(NL) + 5 xXT

(30a)
where the matrix A4, is now given by
A= (fi + B)oy — C. (1 — y )74 B
+ (1 — 3a3)eSy + (1 — 33)tRy . (30b)
Thus, the complete Model 3 is given by equations (27) and (30)

together with the two differential equations (15) and (19) for
eande.

5.3. Model 4

In this model we shall neglect the nonlinear contributions
IT,(NL) and IT{(NL) to equations (27a) and (30a). Further-
more, we assume that the molecular dissipation terms can be
neglected and that the Peclet number is very large so that
C, = cy. With this set of approximations, equations (27a) and
(30a) simplify to:

Reynolds stresses b;;:

Ab;; = —l—ssreSij + BstBy; — (1 —ayZ; — (1 — atZ;;
(31a)

with A given by equation (27b), and
Convective fluxes u; 6:

Ay 0= (%etéij + tb;)B; (31b)

with A, given by equation (30b). Thus, Model 4 is given by
equation (31) plus two differential equations (15) and (19) for e
and e.

6. THE INCORRECTNESS OF THE BOUSSINESQ MODEL

If it is assumed that the buoyancy term B;; and the aniso-
tropic production terms X;; and Z;; do not contribute to b;;,
equation (31a) reduces to

b= —2v,8;;, (32a)
where the eddy viscosity v, is given by
4
v, = A et . (32b)
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Similarly, if we assume that shear, temperature fluctuations,
and anisotropic buoyancy production b;; §; do not contribute
to the flux u; 6, equation (31b) reduces to

Io- =PBixe» (33a)
where the eddy conductivity g, is given by
2

-1
Xe=0¢ V¢ O

=Tex i+ B). (33b)
Here, the turbulent Prandtl number o, is a constant. Even with
these drastic approximations, which have little physical justifi-
cation, the full model M1 has only been formally simplified
since the two turbulence variables

e,T Or e € (34a)

remain to be calculated from the differential equations (15) and
(19). It is also of little use to combine e and € into the eddy
viscosity

2
Vet~ —~ el?], (34b)

since v, is still the product of two independent variables, the
kinetic energy e and the rate of kinetic energy dissipation €. As
a matter of fact, the approximations made to arrive at equa-
tions (32a) and (33a) have been implemented on the “wrong”
variables, since the net result is actually equation (6) which
does not contain the physically correct dependence on the
“large-scale variables” S;;, R;;, and f;, the proper inclusion of
which is essential for the correct behavior of the Reynolds
stresses (§ 8.1). This can be seen as follows. In spherical coordi-
nates, equation (32a) becomes

— . N ., 0Q
uru¢=—v,rsm05’j, u9u¢=—v,s1n055. (35a)

In the case of the Sun, Q increases toward the equator, and
thus sin 6 0Q/00 > 0 in the northern hemisphere (N) and
sin 6 0Q/00 < 0 in the southern hemisphere (S), so that the
second of equations (35a) implies that

oty <O(N), Uty >0(S), (35b)

while observational data, Figures 1 and 15, indicate the
opposite (Ward 1965; Gilman & Howard 1984; Riidiger 1989;
Pulkkinen et al. 1993). As one can see, the improper behavior
of equation (35b) can hardly be expected to be remedied by the
0-dependence of v,.

Furthermore, equation (32a) requires that the principal axes
of the two tensors b;; (representing turbulence) and §;;
(representing the mean flow) be aligned: this is true only for the
case of pure strain but not for flows with mean vorticity. For
three-dimensional flows in general, the measured flow distribu-
tion can be predicted only by choosing different viscosities for
each stress component. Indeed, the most complete derivations
of equation (32a) indicate the presence of nonisotropic terms
which break the “alignment assumption” and which are
responsible for the appearance of the terms Z;; and Z;;.

Finally, equation (33a) contradicts a well-known phenome-
non observed in laboratory, atmospheric, and numerically
simulated turbulence, namely the fact that stably stratified
flows exhibit both a positive temperature gradient and a posi-
tive flux

aT/3z>0, W8>0, (36)
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which is known as the counter-gradient phenomenon
(Priestley & Swinbank 1947; Deardorff 1966; Schumann 1987).
It can be shown that one of the terms that contribute to the
counter-gradient phenomenon and which is missing in equa-
tion (33a) is the temperature variance 62 (Canuto 1992, eq.

[80]).

7. MODEL M5 (OPERATIONAL MODEL): APPLICATION
TO THE SUN
The algebraic Reynolds stress model we shall solve in this
paper is summarized as follows:
Reynolds stresses:

Ab;; = —{5e1S; + BsTtB; — (1 — ay 1Ty — (1 — ay)eZy;,

(37
with A4 given by equation (27b).
Convective fluxes:
Ay 8 = (Ferd; + tb)B; , (38a)
with

Ay = (f1 + B)dy — C. 11—y 4 By
+ (1 — 3a3)tSy + (1 — 3a3)tR, . (38D)

Turbulent kinetic energy, e:

0 _ — -
a—f + Dyle) = —2u,uy S, — 2uguy Sep + A, u, 0 — e, (39a)
with
D (e)= iﬁ[rz(ﬁ+7)]— ! i[sin O(euy + puy)]
RO= T g e TP Gin 0 a6 el T Pl -

(39b)

In this model we shall neglect the left-hand side of equation
(39a) and thus equation (39a) can be rewritten as production
equals dissipation

P,+P,=¢, (40a)
where the production P, (by shear) and P, (by buoyancy) are
defined as

Py= —2(t,u, S,y + Uty Spy) , (40b)

P,=u0. (40c)

Since we assume that the only nonvanishing component of U,
is

Uy =Q(r, O)r sin 6, (41a)

the only nonvanishing components of the mean strain S;; and
vorticity tensors R;; are given by (the problem is axisymmetric
and so there is no dependence on the azimuthal angle ¢)

., 0Q . 0Q
S, =7 sin 0 o Sgp = sin 0 % (41b)

Ry= —2Qsin 0 —S5,,, Rgy=—2Qcos0—Sy,. (41c)

Furthermore, we assume 0Q/0r = 0, which is in reasonable
accord with helioseismological studies indicating that the
variation of the angular velocity in the radial direction is
approximately 10% at the equator and less elsewhere
(Dziembowski, Goode, & Libbrecht 1989); the same assump-
tion was also made in the simulation work of Pulkkinen et al.
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(1993). Thus, §,, = 0 and the production by shear P, becomes
Py= —2uguySe, . (42a)

Since u,u, and Sy, have observationally the same sign in both
hemispheres, P, is always negative: this means that P, is a
negative production of kinetic energy or, more exactly, a sink,
which implies that turbulent kinetic energy is feeding the mean
flow. The chain of physical processes is therefore

buoyancy — turbulence — Reynolds stresses .  (42b)

Buoyancy, generated from an independent source, creates
turbulent kinetic energy (TKE) which in turn creates the Rey-
nolds stresses responsible for setting up and maintaining differ-
ential rotation. Clearly, one expects that only a fraction of the
TKE generated by buoyancy goes into creating differential
rotation and thus

Py > | Py, (42¢0)

a relation that we shall discuss quantitatively in § 8.7. Physi-
cally, equation (40a) can be rewritten as

Pb=|Ps'+€5 (42d)

which means that the TKE produced by buoyancy goes partly
to feed differential rotation and partly is dissipated into heat
via e.

As we have assumed that there is no meridional circulation,
we will also assume that the only nonvanishing component of
B; is the radial component f,. There is in principle no concep-
tual difficulty to include B, and f,. This, however, would sig-
nificantly complicate the solution of the model since it would
require the solution of equation (10) for the mean temperature.

In principle, the angular velocity Q(r, ) is obtained by
solving the angular momentum conservation equation (11),
which in the stationary case becomes

1 d
s sin 0 o [r*@,u, + U, U,

A

sin 6 00
together with equation (9) for the mean velocity. However, in
order to concentrate our efforts on comparing the resulting
Reynolds stresses and convective fluxes with both observa-
tional and numerical simulation data, in this first application
of our method we shall assume that Q(r, 0) is given by observa-
tional data. Specifically, we take (Howard et al. 1983)

Q0) = Qo(1 + a cos? § + b cos* 0), (43b)
Qo =287 urad, a=—-0.12, b= —-0.17. (43¢

Next, consider the equation for €, the dissipation rate of
TKE. In spherical coordinates and for the stationary case,
equation (19) will be taken as (R is the Sun’s radius)

Lo
R sin 6 00

If the diffusion term is treated with a down-gradient approx-
imation

[:Sin2 0‘“0 ud’ + U9 U¢)] = 0 ) (433)

(sin Oeug) = €e " '(c Py + c3Py) —cy€%e™ . (44a)

1
@, = 7 Guet (44b)

O c e?
—v,—, v=C,—
' ox;’ b e
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where a typical value is C, = 0.09 (Rodi 1984) (for the value of
C, used in this paper, see § 8.8), we obtain, using equation

(40a),
0 (. , O€ . € cP,
ae(sm@et ae)—l’sm91<1+ e)’ (44c)
with
8
s C. (c2—c3)R?, c=(c; —cyles—cy)™ . (44d)

To solve equation (44c), we need two boundary conditions.
The first is given by assuming that € is symmetric about the
equator, which implies 0e/00 = 0 at the equator. The second is
given by noting that € is finite at the poles, which requires that
0€/00 = 0 at the poles. We found that in order to satisfy the
above conditions, and given the standard values ¢, = 1.83 and
¢; = 1.44, the value of c¢; was constrained to a very narrow
margin around c; = 1.825. The solution of equation (44c) is
thus written as

€0) =€, FO), (45a)
€, = Ci,, (c; — c3)R?Q3 . (45b)
The TKE, solution of equation (40a), will be written as
e(0) = e, E@©), (45¢)
where
e, =3€,Q". (45d)

Analogously, the turbulent viscosity v, will be computed from
equation (44b) in units of

vi=13Ce, Q5% (46a)
The mixing-length [ will be computed from
N I (46b)
in units of
l,=e;'el?. (46¢)

8. SOLUTION OF MODEL 5 AND COMPARISON
WITH THE DATA

Consider equation (37), which we shall write in matrix form
as

b =y,etS + 7, TE(b) + y3TZ(b) + v, TB(b) . (47)

Since X and Z depend linearly on b, the equation for the Rey-
nolds stress is also linear in b. This equation can be inverted
algebraically, and the solution expressed in the analytical form

b=b(S,R, Ble, ). (48)

The explicit solution is a very complicated function of 6 and of
little practical value for theoretical considerations, so we have
not written it explicitly. It may be of interest to note that in the
special case y, = y, = 0, the solution of equation (47) has been
constructed using Pope’s method, with a result for b;; of man-
ageable complexity (Taulbee 1992). The lack of buoyancy,
however, makes this solution of interest to engineering, rather
than astrophysical problems.
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8.1. Study of the Complete Model and Comparison
to Solar Data

To show that the operational model M5 contains the neces-
sary physics to reproduce observational data both qualita-
tively and quantitatively, we have analyzed the contribution of
each of the terms in equation (47), by considering the following
five models of increasing completeness:

1. b=y, eS;

2. b=y etS + y,1%;

3. b=y erS + y,1x + y31Z;

4. b=y, etS+7y,7L + y,1B;

5. b=y,etS+ y, 17X+ y3tZ + y,1B.

In Figure 1 we have plotted the horizontal stress u, u, versus
6 for each of these cases, and for 1, Q, = 1.5, where the buoy-
ancy timescale is defined as

7 =(gof)" > = [g/H )V — V)12 . (492)

As already discussed in § 6, in case 1, corresponding to the
Boussinesq approximation, the sign of iy u, is incorrect. In case
2, the addition of £ does not change the behavior of Ug Uy, aS
the contribution from the X term is much smaller than that of
the § term. In case 3, the further addition of the vorticity Z,
which embodies the A-effect, substantially reduces the ampli-
tude from case 1, but u, u, continues to have the incorrect sign.
In case 4, the inclusion of the buoyancy tensor B, but not the
vorticity Z, has a sizable numerical effect but in the wrong
direction. Finally, in case 5, corresponding to the complete
model, the inclusion of vorticity and buoyancy radically
changes the behavior of u,u,, which now has a sign and lati-
tudinal dependence in good accord with observational data
(Virtanen 1989) and numerical simulations (Pulkkinen et al.
1993). Our results are also in good agreement with the theoreti-
cal model of Tuominen & Riidiger (1989), who obtained a
minimum between 30°-35° S. It is important to emphasize that
the agreement with observations and numerical simulations
has not been achieved by adjusting parameters (we have kept
the values of the constants entering our model fixed at the
values determined by other independent studies, as given in
Appendix D), but rather by the successive inclusion of funda-

UgUo
104
051
o0 0 ' <0 ™\ 10 30 ' s —70 %
3 05
complete model
q.04
1.2
4 dota

Fi1G. 1.—Horizontal stress uyu, vs. latitude in degrees (negative in the
northern hemisphere and positive in the southern hemisphere) resulting from
the five expressions for b;; as described in § 8.1. Each curve is normalized to the
maximum value of #,u, corresponding to case 5. The observational data are
from Virtanen (1989) and Pulkkinen et al. (1993); 7,Q, = 1.5.
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mental physical processses inside a star: shear, vorticity, and
buoyancy.

However, none of these effects by themselves yield a ugu, with
both the correct sign and latitudinal dependence; it is only the
interplay between buoyancy and vorticity that yields the cor-
rect behavior.

8.2. Temperature Gradient

The value of the temperature gradient that enters equation
(38a) should in principle be determined via the flux conserva-
tion equation the radial component of which, neglecting for the
moment the contribution of the turbulent kinetic energy flux
(Canuto 1992), is given by

—xa—T +u=F,, (49b)
or

where F; is the (known) total flux, in conjunction with a stellar

structure model to provide the values of y as well as the values

of the variables at the boundaries. Introducing the adiabatic

temperature gradient defined in equation (3c), equation (49b)

can be rewritten as

B=Bo—x 'u6(B), (49¢)
where
B=(T/H)XV —V.), Bo=(T/H)V,—V,). (49d)

Clearly, since the two terms on the right-hand side of equation
(49c) are similar in magnitude, that being the reason for the
smallness of #, and since equation (49c) is an implicit relation
for f due to the dependence of the convective flux on f itself,
the solution of equation (49c) requires a delicate iterative pro-
cedure, a process well known in stellar structure calculations.
The final result would yield the value of § versus 6.

In this first paper we follow a simpler procedure: we choose
a set of values of 7, so as to reproduce the available obser-
vational data and checked the consistency of assuming a
0-independent 7, a posteriori. To exhibit the sensitivity of our
results to the value of 7,, in Figure 2a we plot u,u, for 1,Q, =
1 and 1.5 normalized to their maximum absolute value.
Clearly, the observational data are consistent with a very

UgUs
1.0’-
05+
% 70 50 30 -0 10 30 50 0 %
T.0=15
.0.5L bYéo .
TQo= 1
-1.04
data
FI1G. 2a
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90 70 80 40 0 0 10 a0 s 70 9%
F1G. 3—Dimensionless turbulence timescale 7Q, vs. latitude for 7,Q, =
1.5.

narrow range of values of 7, Q,. Horizontal stresses u, u, com-
puted using values of 7, Q, larger than 1.5 have the undesirable
feature of changing sign near the poles, although we note that
current observational data are not very reliable near the poles.
In Figure 2b we exhibit 7, Q, with 7, computed via equation
(49a) with the values of V, V,;, g, and H, taken from a solar
model. As one can see, within the convective zone, 7,Q, is
indeed of the same magnitude as that in Figure 2a. It may
further be noticed that our values of 7, are also consistent with
those obtained by Durney (1991); specifically, his variable o =
4Q32 12 varies between 4 and 5.5 between the equator and the
poles (his Fig. 2¢).

8.3. Turbulent Timescale 1(6), Dissipation Rate €(6), and
Kinetic Energy e(0)

In Figure 3 we present Q, t(6) versus 6 for 7,Q, = 1.5; QT is
minimum at the poles, has its maximum values at —20° N and
20° S, and is relatively flat near the equator. We note that the
implicit t-dependence in our model is highly nonlinear, and it

3‘0 [ T T T T L T T T
250

2.0f

Qo
[§))
Lao v

-

0.5}

0.0 . ]
0.75 0.80 0.85 0.90 0.95 1.00

. PR L PR

FiGc. 2b

FiG. 2.—(a) Horizontal stress #,u, vs. latitude for 7,Q, = 1, 1.5, normalized to their maximum values. Same data as in Fig. 1. (b) Value of7,Q, vs. r/R as from a

solar structure model.
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90 J5 60 30 900 10 30 80 70 90
Fic. 4—TKE dissipation rate € in units of €, (eq. [45b]) vs. latitude for
7,Q, = 1.5.

is difficult to assess its influence on the stresses and fluxes a
priori.

In Figure 4 we present the turbulent kinetic energy dissi-
pation rate €(6) versus 0 for 1, Q, = 1.5 obtained from the solu-
tions of equations (44c)—(44d) as discussed in § 7. It is
minimum at the poles and is maximum in the midlatitudes at
—40° N and 40° S. The equator is also a relative minimum of
€(f), being approximately a factor of 2 smaller than its
maximum value.

In Figure 5 we present the turbulent kinetic energy
e(0) = €(0)t(0)/2 versus 0 for 7, Q, = 1.5, which is qualitatively
similar to €(f). In Figure 6 we present the three components of
the turbulent kinetic energy

Tup L dug . sug (50)
versus 0 for 1, Q, = 1.5, which quantify the latitudinal depen-
dence of the degree of anisotropy. All three components exhibit
similar qualitative behavior: they all have their minimum
values at the poles, and local minima at the equator, and their
maximum values in the midlatitudes at ~40°. The equatorial
minimum of the dominant component, the radial kinetic
energy u2/2, is approximately a factor of 2 smaller than its

e

L L L L ) s 1

»9IO -7.0 -50 -30 -1.0 0 I‘O
F1G. 5—TKE ein units of e, (eq. [45d]) vs. latitude for 7,Q, = 1.5

30 50 70 90

90 70 B0 40 J0 0 10 8 s 70 %
FIG. 6.—Components of the kinetic energy uZ, uZ, 412 in units of e, vs.

latitude for 7, Q, = 1.5.

maximum value. It is evident that the radial component domi-
nates over each of the angular components. Clearly, the hori-
zontal components uj/2 and u2/2 are nearly equal beyond
approximately 60° S. The maximum degree of anisotropy
exists in the midlatitudes, while u2/2 is uniformly larger than
both uZ/2 and u}/2, and are nearly equal beyond approx-
imately 60° S.

8.4. Off-Diagonal Reynolds Stresses u; u;
In Figure 7 we present the three off-diagonal stresses

UgUy , U Ug, Ul (51)

versus 0 for 7, Q, = 1.5. The amplitude of u, u, at its extreme
value (45° S) and that of u,u, at its extreme value (35° S) are
approximately twice and 5 times as large, respectively, as the
amplitude of u,u, at its extreme value (30° S). Both u,u, and
u, uy are antisymmetric, while u, u, is symmetric with respect to
the equator. The stress u, u, is negative everywhere, and is in
qualitative agreement with that computed at mid-layer in the
simulation of Pulkkinen et al. (1993), and with that given by
the model of Tuominen & Riidiger (1989).

0.006+

0.010¢

FiG. 7—Off-diagonal Reynolds stresses Uy, U, Uy, U, U, in units of e, vs.
latitude for 7, Q, = 1.5.
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90 70 50 30 -0 0 10 30 8 70 9%
Fi1G. 8—Conductivity y,,, €q. (52) in units of e, /Q, vs. latitude for 7,Q, =
1.5.

8.5. Convective Fluxes ﬂ

To ease the comparison with previous work, we shall write
the turbulent heat fluxes as

u0=y,p;, (52)

where y;; is the turbulent conductivity tensor. Since we assume
that B, and B, are zero, we can only determine y,,, x4, and x,,
while the remaining y;; remain undetermined. In Figures 8-10
we plot these conductivities versus 6 for 7, Q, = 1.5: y,, and g,
are symmetric, while g, is antisymmetric. Both y,, and y,, are
approximately an order of magnitude smaller than y,,. The
former have peak values around —40° N and 40° S while the
latter has a minimum at the poles and a relative minimum at
the equator which is approximately a factor of 2 smaller than
the maximum value. The conductivity y,, is positive every-
where as expected, since the convective flux and superadiabatic
gradient are directed toward the surface in the convection
zone. The maximum of g, is at 45° S; the minimum of y,, is at
35°% and y,, is negative everywhere. Both y,, and y,, vanish at
the poles, and 4, at the equator. From the angular dependence
of xg, it is clear that the component u, 6 of the convective flux
is mainly directed away from the equator and toward the
poles; in the case of y,,, u, 0 is negative everywhere. Both y,,

xer

0.003

F16. 9.—Conductivity y,, vs. latitude. See Fig. 8.
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-0.006+

Fi1G. 10.—Conductivity ,, vs. latitude. See Fig. 8.

and y,, are in general accord with the simulation results of
Pulkkinen et al. (1993) computed just below the top of the
convection zone.

8.6. Turbulent Viscosity v,(0) and Mixing-Length I(6)

In Figure 11 we plot the turbulent viscosity v,(f), equation
(44b), versus 0 for 7, Q, = 1.5. It is minimum at the poles and is
maximum in the midlatitudes at —35° N and 35° S. The
equator is also a relative minimum of v(6), being nearly a
factor of 2 smaller than its maximum value.

In Figure 12 we plot the mixing-length /(6), equation (46b),
versus 6 for 7,0, = 1.5. It is minimum at the poles and is
maximum in the midlatitudes at —35° N and 35° S. The
equator is also a relative minimum of /(6), being approximately
a factor of 1.3 smaller than its maximum value.

8.7. Where Does Solar Differential Rotation Originate ?

In Figure 13 we have plotted the ratio of the shear pro-
duction P, equation (42a), to the total production P = P,
+ P, versus 6 for 7,Q, = 1.5. Since P (0)/P(6) is negative every-
where, this implies that shear is not a source but a sink of energy.
As | P((6)|/P(0) is at most 0.025, it means that about 2.5% of the

Vt

P .o S
90 70 50 30 -0 6 10 30 s 70 %

F1G. 11.—Turbulent viscosity v, in units of v} (eq. [46a]) vs. latitude for
7,Q, = 1.5.
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L

90 70 80 90 0 0 10 30 50 70 %
FIG. 12.—Mixing-length I (eq. [46b]) in units of I, (eq. 46c]) vs. latitude for
7,Qo = 1.5.

total power generated by buoyancy goes to generate differential
rotation. Furthermore, since the buoyancy production P,/P
(Fig. 14) has a very sharp maximum around 40°, our model pre-
dicts that this is the latitude at which solar differential rotation
originates (note that the shear Sy, which enters in the shear
production is maximum between 50°-60°, so that the
maximum of the shear production | P(6)|/P(6) does not coin-
cide with the maximum of the shear).

Our results show that buoyancy, which is responsible for the
creation of turbulence, generates and maintains the differential
rotation in the Sun, and that the source of differential rotation
is in the midlatitudes. The maximum buoyancy production at
about 40° coincides with the maximum of the radial com-
ponent of the convective flux (which is the dominant flux),
u, 6 =y, B,, which is evident from Figure 8 since f, is essen-
tially independent of 6 in our model as we have verified a
posteriori. The turbulent kinetic energy (see Fig. 5) is also
maximum at about 40°, part of which goes into generating
differential rotation and part of which is dissipated into heat. A
manifestation of differential rotation is the horizontal Rey-
nolds stress uyu, which has its extreme values in the mid-
latitudes, though at angles slightly smaller than where the

0015 \ /
00201 \ /

-0.025 +

Vol. 425
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90 70 80 80 490 0 10 3 8 70 _ %

FiG. 14—Ratio of the buoyancy production P, (eq. [40c]) to the total
production P = P, + P, vs. latitude for 7,Q, = 1.5. Notice the maxima at
around 40°.

buoyancy production and the turbulent kinetic energy are
maximum.

8.8. Comparison to Solar Data

In Figure 15 we plot the horizontal Reynolds stress Ugy
versus 6 for 1,Q, = 1.5 in units of (deg day ~!)? together with
observational data pertaining to sunspot groups (Gilman &
Howard 1984). In order to express our results in the same units
as the observational data, we have chosen the value of C,=0.1
appearing in the unit €,, which is well within the range of
values suggested by a variety of turbulent flows. Both the lati-
tudinal dependence and the amplitude of the stress uyu,, predicted
by our model are in very good quantitative agreement with the
data from spot groups (Gilman & Howard 1984; Gilman &
Miller 1986; Virtanen 1991; Riidiger 1989). This agreement has
been achieved with one free parameter, t,, whose value agrees
with that computed from a solar model.

9. THE A-EFFECT: ANISOTROPIC VISCOSITY

As discussed by Riidiger (1989), the dependence of the Rey-
nolds stresses on Q itself, rather than on its derivatives 6Q/or

UVe
02+
0.1+
9 70 50 30 -0 O\ 10 = 30 50 70 90
0.11
data
present model
024

F1G. 15—The horizontal stress #,u, (deg day~')? vs. latitude for 7,Q, =

F1G. 13.—Ratio of the shear production P, (eq. [40b]) to the total pro- 1.5. The sunspot group data are shown for comparison (Gilman & Howard
duction P = P, + P, vs. latitude for 7,Q, = 1.5. 1984).
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and/or 0Q/d0, is called the A-effect, a phenomenon that was
independently discovered more than once over the years. In
our formalism, it comes out on very general grounds from the
structure of the Reynolds stress, equation (27a). In fact, such an
equation is a general expression for b;; in terms of basic inde-
pendent tensors S;;, B;;, Z;;, and Z;;. The latter implies the
vorticity tensor R;; (eq. [3b]), which is the only one that entails
a linear dependence on Q (egs. [41]). To make the Q depen-
dence explicit, let us consider the Reynolds stress uguy Using
equations (37) and (41) we obtain

o

Tty = F1(O)Q + Fa(6) sin 0 —

Q
+ Fa(0) sin 0r ==, (53a)
or
where
A -1(,,2 2
~ Fy =2(1 — a,){cos O[e ™ *(u? + 2u?) — 2]
+ e 'u,uy sin 0}, (53b)
A _8 i 2
SR -0 a1)<e - 3)

+ (1 —a)le @ +2u) — 2], (53¢)
A

T Fa= Qo —a)e iy, (53d)

Using equations (45) and C, = 0.1, the unit T, €, takes the
value 2.8 x 10'° cm® s~ *. The parameter A is defined in equa-
tion (27b). Alternatively, the variable te can be expressed in
terms of v, since from equation (44b)

v,=13C,et. (53e)
Analogously, using equations (37), (38), and (41), we derive
0Q

u,uy = G(0)Q + G,(0) sin 6 — + G;(0) sin Or (;i: , (54a)

a6
with
A iy, 2 .
e G, =2(1 — a){[e"'(2u? + u2) — 2] sin 0
T

+ e 'u,ug cos 0}, (54b)

A 5 (7)\? o
_;Gz= 2—0‘1—“2_-2-'85?_5 1—wD™ e 'y, ,

(54¢)
A - 2
T e 3=E—(1_“1)<e_1“3—§>+(1_“2)
17,2 | 72 5 A% -1,-1,2
X[e (2“r+uo)_2]__ﬁs_ D™ "e u,,
2 T
54d
where (54d)

A=A+ ? ﬂs<1)2(1 —wWD~(fy + B),
)

u=0—y)fi + B)_IC;1<TL>2 s

b
D =[w? + (1 — o] sin® 0 — 2 (-, + B,

oQ
w, =T —, a),=1:;36. (54¢)
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These expressions can now be compared with the general for-
mulae in terms of four independent turbulent viscosities
(Riidiger 1989):

Vih » Vhp » Voh » Voo » (553)

ie.,

] oQ
Uguy = Ay cos 0Q — vy, sin 0 % — Vhy COS Or o’ (55b)

— oQ 0Q
u,uy = Ay sin 0Q — v, cos — — v,, sin r — . (55¢)

00 or
We thus have the following identifications:
Agcos@=F,, Ay,sinf=G,
V=—F,, v,,=—F;tan 6 (55d)
V= —Gytan 0, v,,= —G,4

Using an extension of the mixing length, Durney (1991) has
computed the four viscosities which he calls

Vi=Vy, Vptanb=v,, vitan0=v,,, v,=v,. (55)

Kiiker, Riidiger, & Kichatinov (1993) have used equations
(55b)—(55¢) under the approximation

Vip = Vo = (V; — vy) sin? 0, (55f)
and with the transformation
= in? 0 20,
Vpp = Yy SIN“ 0 + vy c?s (552)
Vo = Vyy €082 0 + v, sin? 6 .
Other authors have used much simplified expressions. Zahn
(1992) uses equation (55b)—(55c) in the form

Uglty = —Vy, sin 6 %0’
(55h)

. Q
U Uy = —v,, sin Or o

This is just the Boussinesq formula (32a) whose inadequacy we
have already discussed in § 6.

As for the present model, we have for v, and v,,,

Yo _ 4 [1 - c<1>2(1 - u)D"] . (56a)
Ve A Tp

where 2C = 584(2 — o; — a,)~*. Because of buoyancy
Vo 7 Vip - (56b)

The function v,,/v,, is plotted in Figure 16a. Next, since if the
viscosity in the radial direction is less than that in the horizon-
tal direction, the angular velocity increases toward the equator,
the variable

v 1A
s=um  1An
vvv 2vUU

(56¢)

must be greater than unity. K6hler (1969) has suggested the
following empirical rule:

Q(equator) 11
Qpole) 1+ 0 s—1). (56d)
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FiG. 16— a) Ratio v,,/v,, (eq. [56a]) vs. latitude. (b) Parameter s (eq. [56c]) vs. latitude

Using equation (43b), the left-hand side of equation (56d) is
1.41, which implies that

s=1371. (56€)

Since we have assumed that the angular velocity is larger at the
equator, for consistency reasons, our model must reproduce
equation (56¢). In Figure 16b we plot the variable s predicted
by our model. The values are indeed consistent with equation
(56¢).

10. FRAME INDEPENDENCE

It may be of interest to study the effect of writing the basic
equations in a noninertial frame rotating with a constant
angular velocity Q,. Equation (A1) would acquire the extra
term corresponding to a Coriolis force

—2€;3%Qoj 5 (57a)

where € is the totally antisymmetric unit tensor. Correspond-
ingly, equation (A23) acquires the new term

— e m + €y ) Qo (57b)

which can be reabsorbed in the first two terms of equation
(A23) which change to

ou; ___{oU;
—I:uj ™ (a—xk + 26 QO,> + uk(é_x,f + 2€j Qo,)] , (57¢)
where the prime on U’ indicates that the mean velocity is now
taken in the rotating system. Introducing now the shear Sj;,
equation (3a) and the modified vorticity

1/0U; U,
* — — —t_ ) _ se . 7
Rl] 2 (axj axi) 2€ljk on (5 d)
Equation (57¢) becomes
—[ujw(Si + RE) + u;w(Sy + R}, (57¢)

which is formally identical to the expression in the absence of
rotation, the difference being the change of §;; and R;; into S;;
and R}, Clearly, since S;; depends only on the derivatives of
Q, the fact that the prime means that one should change Q into

Q —Q, has no effect, and thus, S;; = S;;. In the case of the
vorticity we have, using equation (41c),

Ry = —2(Q — Q) cos 6 — Sgp — 2€53, Qo
—2(Q — Q) cos 6 — Sp, —2Qpcos 0,  (57f)
which shows explicitly that Q, cancels out. This means that

1/0U; aU;
R4 | —=_ZZi
R~ Ry 2 <6xj 6x,~> ’ (57g)

and thus the effect of a constant Q, cancels out entirely from
the equations.

11. PLANS FOR FUTURE RESEARCH

The Reynolds stress model solved in this paper is algebraic,
rather than differential, so that boundary and initial conditions
could not be imposed. For example, the stresses u, u, and u, u,
which ought to vanish at the surface, do not do so in our case.
It is however important to note that both stresses are in good
accord with the stresses computed below the surface of the con-
vection zone in the simulations of Durney (1991) and Pulkkinen
et al. (1993). This indicates that our results ought to be con-
sidered valid near the surface, but not necessarily exactly at the
surface.

The nature of the formalism we have presented has the
advantage of allowing us to envisage a series of improvements
upon the model solved in this paper. For example,

1. The nonlinear contributions to the Reynolds stresses rep-
resented by IT;(NL) and IT{(NL) ought to be included.

2. The M5 model could be supplemented with the differen-
tial equations for the turbulent kinetic energy e.

3. While keeping 6? in algebraic form, one could solve the
differential equations for the Reynolds stresses with a simple
down-gradient approximation for the third-order moments.

4. The next step involves the improved treatment of the
diffusion terms discussed in Appendix C.

5. All previous cases could be implemented with a rotation
curve for Q either given by the data, as we have done, or as a
result of solving the angular momentum equation.

6. Any of the previous models could be solved in conjunc-
tion with a stellar evolution model that would imply the solu-
tion of the flux equation as discussed in § 8.2.
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12. CONCLUSIONS

Since the angular momentum transport in a differentially
rotating fluid is contributed principally by the Reynolds
stresses, the study of the latter has been a topic of major impor-
tance. The most widely used models to construct u;u; are still
phenomenological in nature, using symmetry considerations
and general physical constraints (see the extensive monograph
by Riidiger 1989), or extensions of the standard mixing-length
theory to rotating convection (Kichatinov 1986, 1987; Durney
1987, 1991; Kiiker et al. 1993). Phenomenological approaches
express the stresses and fluxes in relatively simple forms that
exhibit the proper qualitative physics, but they also contain a
large number of undetermined parameters that severely limit
their predictive power. In addition, because of their nature,
there is no systematic methodology to improve upon them.

In the last decade, numerical simulations of the basic equa-
tions have acquired an increasingly important role in both
stellar structure calculations (Nordlund 1982; Sofia & Chan
1984; Marcus 1986; Chan & Sofia 1986, 1989; Stein & Nord-
lund 1989; Stein, Nordlund, & Kuhn 1989; Hossain & Mullan
1991; Xie & Toomre 1991, 1993) as well as in the problems of
differential rotation (Glatzmaier 1984, 1985a, b, 1987; Gilman
& Miller 1986; Pulkkinen et al. 1993). Both approaches share a
common difficulty: since it is not possible to resolve all of the
scales characterizing a turbulent flow with a Reynolds number
of Re ~ 10'* (we recall that the total number of grid points
scales as ~Re3), one must rely on a Large-Eddy Simulation
(LES) which is only as good as the input physical model to
describe the scales that cannot be numerically resolved. Since a
subgrid scale (SGS) model appropriate for stellar interiors has
not yet become available, the universal use of the Smagorinsky
(1963) formula as an SGS model introduces an unquantified
uncertainty in all of the LES results since such a model was
originally devised to describe shear flows without buoyancy
and/or rotation which are key features of stellar structure.

Here we propose an intermediate approach which is not
phenomenological since it derives from the basic governing
dynamical equations and yet, it has an algebraic rather than
numerical structure. We began with the derivation of the
dynamical equations for all of the turbulence variables of inter-
est, and presented a full treatment of the nonlinear inter-
actions, which considerably improves the mixing-length
approach in which all the nonlinear interaction effects are com-
bined into a relaxation time (Kichatinov 1986; Durney 1987,
1991). This is explicitly seen in the fact that the equations for
the Reynolds stresses and convective fluxes, which are second-
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order moments, imply third-order moments, for which we also
derive the dynamic equations and suggest a systematic pro-
cedure to solve them. The latter is of greater validity than the
down-gradient approximation often adopted to treat these
moments (Appendix C).

Were the complete Reynolds stress model M1 to be solved, it
would predict the absolute latitudinal and depth dependence
of the Reynolds stresses u;u;, convective fluxes u; 0, and the
other quantities that characterize the highly turbulent motion
in the convectively unstable regions of stars. However, in view
of the complexity of the full model, we have introduced a set of
simplifying assumptions so as to obtain algebraic Reynolds
stress models of varying complexity. In this paper, we have
solved the model that contains only one differential equation
for the dissipation rate €, while all the other turbulence vari-
ables are given in algebraic form. We have presented a detailed
study of the separate effects of shear, rotation, anisotropic
energy production, and buoyancy on the angular behavior of
u;u; and u; 0 and have shown that:

1. uquy is in quantitative agreement with observational data
(Gilman & Howard 1984).

2. Shear alone, namely the Boussinesq formula uu; =
—v,8;;, cannot give the expected result since it describes a flow
in which turbulence is generated by shear while in this case
shear is generated by turbulence (which derives from an inde-
pendent source, buoyancy).

3. Shear and buoyancy alone do not yield acceptable results.

4. Agreement with the data is the result of the nonlinear
interplay between vorticity and buoyancy.

5. Production of shear by turbulent buoyancy is predicted
to occur mostly at a latitude of ~40°.

6. From the energy viewpoint, 2.5% of the buoyant pro-
duction rate is required to generate and maintain solar differ-
ential rotation.

7. The degree of anisotropy in the turbulent viscosity is pre-
dicted to depend on latitude with an average difference
amounting to ~20%.

The authors would like to thank P. A. Fox, I. Tuominen,
I. Kichatinov, and L. Paterno’ for useful information, dis-
cussions, and correspondence. Figure 2b was kindly provided
to us by L. Paterno’. F. O. Minotti would like to thank
CONICET (Consejo Nacional de Investigaciones Cientificas y
Tecnicas de la Republica Argentina) for a post-doctoral fellow-
ship at NASA, Goddard Institute for Space Studies.

APPENDIX A
DERIVATION OF THE BASIC EQUATIONS

The basic equations describing a compressible fluid of density p, pressure j, temperature T, velocity v;, kinematic viscosity v and
thermal conductivity K, in an inertial reference frame are given by (d/dt = 6/0t + v;0/0x)

o

Par = T ox,

P 4 Tt

. dT dp *T [

ox? TH

az
—mp+wagm, (A1)
o (Y] 50 (A2
ox;0x; 7 \ox; PL )

where ¢, pQ is the gradient of an external flux, and p = pv. In addition, we assume a perfect gas law j = RpT. First, we split the

variables into a mean and a fluctuating part

p=P+p, T=T+9,

p=p+p,

v,- = Ui + ui ) (A3)
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where, P, T, p, and U, represent the mean fields; the fluctuating components have zero average
p=0=p =u;=0. (A4)

Assuming further that the fluid is an ideal gas, P = RpT, and neglecting second order quantities, we derive for p’ the relation
o p 1
— = —qaf =, =—, AS
p of + p’ =T (AS)

In the standard Boussinesq approximation (Canuto 1992, hereafter Paper I, eq. [21b]), the second term with the fluctuating pressure
p/P is absent. The physical interpretation of the terms arising from its inclusion will be discussed shortly. Inserting equations
(A3)—(A5) into equations (A1)—(A2), and following the procedure outlined in Paper I, we obtain the dynamical equations for the
mean and fluctuating variables (D/Dt = /0t + U,;0/0x;, ; = g;«; for any vector a;, a; ; = 0a;/0x;):

DU, 1P\ o __
i _<gi+;a—£>_a_xjui“j+Nl’ (A6)
Dy, ou, d 0 0u
E:—ujaj—a—z——(uuj ,_J)+10+V3—2+N (A7)
J i I
DT &#T o — € 1 _ 0P
- = . - N
o "ax,? 6xju’0+c,,+ Ujge *Q+ N, (A8)
Do oT 820 —
D= (u 0-u0)+ 155 Tt [(u, Dt — w1+ N, (A9)

where we have taken the v — 0 limit and where € is the dissipation rate of kinetic energy. The non-Boussinesq terms N’s are given by
(Canuto 1993, hereafter Paper I, eqs. [28]-[33])

N B?_ (A10)
PN = =005+ B o,
P _ 10pP p oP 1( o __op (Al1)
N2=—<gi+ani>cx Pa ( >+P<paxi paxi ’
gu L) P o 1 % (A12)
pc, N3 =U;A; +u; — 6 (a()uj—Ppuj> 6x,+a0u’0 Ppujaxj,
with
w 1 op
A=ap_L,% (A13)
s =00 ox; P p ox;’
oP — 1 oP op ap 1 op ap
CooNo = Uy 50+ 5 oy ﬁ0+[ﬂ%r—@9—P@m—ﬁDJw£+<m0w;-m0h)—P<mpwi wrsr),
(A14)
with
_% _(p oP P _gow\_1( 22) (A15)
A=~ <P - “0> ax, T a(@ o, Yox)  P\Pax Pax)

Al. SECOND-ORDER MOMENTS

Following the procedure outlined in Papers I and II, we derive the following results:

D— 0 —_ 0T ou, 3 0
D u 0+ 2%, Ou;u ( i o +u£?a >+AB — I +n,+ C;, (A16)
where the pressure correlation term is defined as
m =0 (A17)
! ax;
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and the new term C, is defined by

C;=N,0+pN,u; + o W€, (A18)
with (Paper I, eq. [37f]) ’
1 —
TE = g% . (A19)
T
Next, consider the equation for the temperature variance 62.In lieu of equation (35a) of Paper I we have
L oT = 8°6*
= -2 o, A2
+6xu0 uf)a +X62 2¢q + C (A20)
where
1 1 —
- C° 0+—e€b, (A21)
2 Cp
with (Paper L, eq. [38¢])
€0 = % q%0 . (A22)

Next, consider the equation for the Reynolds stress u;u;. We derive

D__ o0 ____ ___0U; ou; 02
Ftu,-uj+a—xkuiujuk ("“ka +uuk5—1>+iu0+lu0 I1; +v62uu €;+Cy, (A23)
where we have defined
) ) . .
= ,a” +u —” Cy=Nyu, + Niu;, (A24a)
00\? I
6= x<5;> . ey= i (A24b)

Even though the tensor ¢;; is usually taken to be dlagonal we prefer to use a slightly more general expression

€= 3 €dy+(1—F1?)° S bus (A25)
where the definition of F is given in Appendix D. The equation for the turbulent kinetic energy e = %?, where g% = u; u;, is then,
De 0 15— 8U 1 1
g -C..
8x2qu 6 +ﬂ.u0 1'[,, e+2 i (A26)

A2. PRESSURE-STRAIN CORRELATIONS

There have been many proposals for the tensor IT;; which have recently been reviewed by Shih & Shabbir (1992), whose
formulation we follow

4 0
I; = 2c, v 'by; + (1 — Bs)By; — 3 eS;; — o Xy — oy Zy; + I;{NL) + Pu +— o, pu; (A27a)
where
II(NL) = —e 'II}} + A, A¥; . (A27b)
The first term is known as the Rotta (1951) term. The timescale t, which in principle should be determined from the integral of a
Green function derived from a second-order closure (Herring 1987), is usually taken to be © = 2e/e. The nonlinear contributions ITj}
and Af; are given by

SIIf = b3 Sy + bjk ik = 2byjbyi Sim — 3D, by Sy + b3 Ry + bA Ry, (A28)
Afj= =31+ 4B5) Al + 31 — 3Bs5)Cl + (B, + 3B5)D% + Bo EY + e~ '(Bs — Dby 0uy + (3)e™2Bs by by, Ou,, (A29)
where our b;; and the one in Shih & Lumley (1985) are related by: b;; = 2eb;r. Furthermore,
b =wuu;—%ed;, bi=byby, (A30)
By =Au;0 + A;u;0 — 36, u 0, (A31)
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Zij = Sik bkj + Sjk bik - %50' Skl bkl ’ (A32)
Zi; = Ryby; + Ryby — 30, R by, (A33)
ou; oU; ou, 0U,;
28 =—4—, 2R;; = — ——| (A34)
oox; ox Toox;  ox
2EAZ = bike_uj + b]kyi;; — %5ijbpk9_up s (A35)
2eCl; = (04 bj, + 63 by, — %60' b,‘,,)u,,_o y (A36)
4e2Dk = [blk b_)p + b]k b:p - (6ik bjm + 5jk bim)bmp]7 ’ (A37)
4€2EY; = (biy ;0 + b ;00D — (555 bjm + 0 bim)bppu, 6, (A38)
AL=0. (A39)

If we neglect the nonlinear terms we recover equations (44) and (44a) of Paper I provided we call 1 — B85 = ¢;. Combining equations
(A23), (A26), and (A27), we obtain the dynamic equation for the tensor b;;

D i, 1 _ - _ 2
E bij + a_x’c I:(“i “juk - '3' 6ijq2uk> + (6”[114] + 5jkpul~ — §5ijpuk>:'

8
= —2cft 'b; + Bs By — < eSi; —

15 & a- al)zij -(1- aZ)Zij u(NL) 5;, Cix- (A40)
Similarly,
— 3 5 00 ou,
m=0 Z—” _ ai B+ fyt 00 + 9,407 — a3<s,, +2 R,,)Bu +IUND — 0+ 0 5 a‘; (Ad1a)
where
IM{(NL) = 4, Y;; + e (0ty B, — 6 b;; 00 XSy + Rj) (A41b)
and
4eY; = 2, 0%b;; + 473 0u; Ou; + 294 e by Ou; By, + by 0, Ou) + s e~ by by, 0 (A42)
BZEb,k-BFJ'i‘kaO_u,—%é,jbkpg_up. ) (A43)
If we neglect the nonlinear terms by taking
Y2,3,4,5 = 0, (A44)

we recover equation (43a) of Paper I if we further callf; = 2¢4 and y, = c¢,. Substituting equation (A41) into equation (A16) above,
we finally obtain the equation for u; 0,

D 5 __ 0T 3 — 5
e u; 0 6 (Ou u; + 5Up0) u;U; ™ <1 ~3 oc3>S,~juj9 — <1 2 a3>R,~juj
.l

D

— — 1 2
—fit w0 + (1 — )4, 0% — TIYNL) +-2-(v + %) % w0+ C;. (A45)

J
APPENDIX B
THE ALGEBRAIC REYNOLDS STRESS MODEL
If one neglects the convective and diffusive terms, represented by the left sides of equation (A40) and (A45), these equatnons
become algebraic and one can thus write the anisotropy tensor b;; and the flux u; 4,0 in a form that only entails the inversion of

matrices. Such a model was used for example by Launder (1975). Physically, this corresponds to assuming that production P equals
dissipation €, as is clear from equation (A26) which becomes

P=c¢, P=P,+P,, (B1)
where the buoyancy and shear production terms are defined by
P,=2Au0, P,=—b;S,;. (B2)

A better approximation can, however, be devised that, while accounting for the possibility that locally P # e, still leads to an
algebraic model which of course can easily be reduced to the previous case by taking P = e. This approximation was originally
suggested by Rodi (1984) and has been used extensively since then. We begin by considering equations (A23) and (A26), which we
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write in compact form as
D___
Dp Ut + D(uu;) = RHS(A23), (B3)
De
3¢ T DrAe) = RHS(A26), (B4)

where RHS(A23, A26) means the right sides of equations (A23) and (A26) and D ;(a) means the diffusion of the variable a (third-order
moments). Introducing the dimensionless anisotropy tensor

1 2 -
aij=;uiuj—§5,-jse b, (BS)
equation (B3) becomes
D 1_| De
e Dt a; + - u;u; Dr + Dge) | + | Du;u;) — u u;u; D ((e) | = RHS(A23) . (B6)
At this point we employ the approximation
eD J(u;u;) ~ u;u; D (e) (B7)

so that we can neglect the last parenthesis in the left side of equation (B6). Furthermore, using equations (B4), (A23), and (A26), we
derive

1

5 6ij Ckk - Hij(NL) . (B8)
Taulbee (1992) has recently shown that Da;;/Dt = 0 is true only in the asymptotic case, namely for large values of the dimensionless
parameter 1S > 1, where © = 2¢/e is the characteristic time of turbulence, and S is the shear. It is clear that in many astrophysical
settings of interest, for example in accretion disks, such a relation is not necessarily satisfied. Moreover, since the presence of
buoyancy must also be accounted for, we extend Taulbee’s suggestion by writing

S-S, =51—R)"?, (B9)

where the flux Richardson number is defined as the ratio P,/P, (see eq. [ B2]).
In order to encompass arbitrary values of S, it is suggested that one introduces the variable a;;/tS,, and take D(a;;/7S,,)/Dt = 0
Using equation (19) of the text and the fact that © = 2e/e as well as equation (15), one obtains

8
—eS;+BsB;i—(1 —a)Z; — (1 —a)Z; + C;;—

D 1
e, i+ aij<P e+ C,-i> = —2cfer 'a; — 15

Dt _ - p
ot tle”'De) + € 'De)] =2c, — 1) —2 < (c¥—1), (B10a)
1
= P (¢ciPs+c3 Py), (B10b)
so that
1 D D
— = LS 42, =) —2Act—1) = Bl
S, D (zSy) = S D Sy +2(c; — 1) — 2ct ) (B10c)

Using equation (B10c) in equation (B8) yields equation (27a) of the text. o
A similar treatment can be employed in the case of the convective flux u; 6. In that case, it has been suggested by Gibson &
Launder (1976) that the left side of equation (A45) be taken as

D — 1| De 1 [ DO?
u0+Df(u 0)——u0{ [Dt D (e )]+Q_[Dt +D,(02):|} (B11)
which, upon using equations (A20) and (A26), becomes
D — J— -
Eui0+Df(ui0)=B‘c’1u,~0, (B12)

where

m |

1 _ p -
—I—Ee 1Ci,~+c,,(€—:—1-Pe 1),
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— 0T 1
Po=—uf—+=C°
A u; 0 o, + 2 c, (B13)
the Peclet number being defined as
12 5292|-t
Pe=c,—1 |=
e =c, 7 |5 o (B14)

Substitution of equation (B12) into equation (A45) gives equation (28a) of the text.

APPENDIX C
THIRD-ORDER MOMENTS

The equations for the third-order moments are taken from Canuto (1992). We have

D A\ 0 __ — 2 e
—+ 3! Juuyu, = —(@u;u Uy, + perm.) — | uu — u;uy + perm. | + (1 — ¢ )(4; 0u;u, + perm.) — — (6;;q%u, + perm.) ,
Dt ’ 0x, 3t
(C1)

D _ R S 0 — _ 0 — — 0 __
<E+ T3 1>u u; 0 = wuu f — (wu, 0U; , + u;u, 60U, ) — (u,.uk O_xk Ou; + uju"(?_xk Ou; + Ou, a; u,.uj>

2 . — L
+ 3 Cu 8 M u + 17, 6,470 + (1 — ¢y NAb%u; + 4,0%u), (C2)

D —— 0 __ 0 =
(E+13‘1+2‘co_1>ui02=29u,~ujﬂj—02ujU,-,j 6 — Ou; + (1 — ¢, )4,0° — 6_0 , (C3)
D ¢o__—1\53 _p5 6 oz 0
=360 Ou;, — 0 4
(Dt+c8 )0 u;B; — 3ua t9+)(62 , (C4)
where f; has been defined in equation (3c) of the text, and
aU; 2e T 62
L= — =, =, =, CS
Ui ox; T p T3 2, Ty < (C5)
In the stationary case, it has been customary for many years to approximate equations (C1)—(C3) by
_ 0 _ — e 0 =
TRTRTAES —t3uku,a uu; , uiuj0—>—r3ujuk5;ké)ui, u; 0% > —15(1 + 2157, l)uiujaé? . (C6)
If the degree of anisotropy is assumed to be small,
b =wu; —%ed,;~0, (C7)
one further has
U u; iy, — Aviﬁ u;u;0— Avim u; 02 - Bv—a-m (C8)
i%j%k taxkij’ i%j taxj i i taxi )

with 3cgc, A = 2and B = A(1 + 21575 !); the turbulent viscosity v, is given by equation (32b). Equations (C6) and (C8) represent the
down-gradient, diffusive approximation to the third-order moments.
As discussed in Paper I, equations (C8) lead to incorrect results: for example, planetary boundary layer data show that

— 0 —
w? >0 and —w?>0, (C9)
0z
which contradict the first part of equation (C8). Recently, the system of equations (C1)—(C4) has been inverted exactly in the case
where there is no mean flow and the variables depend only on z (Canuto et al. 1994). The principal result is that all third-order
moments exhibit a universal structure: they all are a linear combination of the gradients of all the second-order moments. For
example,

— 0 — 0 0 0 =
q*w =D, aw+D26q+D3a—w0+D4a—02 (C10)
where the turbulent diffusivities D, have the general structure
D~ av, + bwo , (C11)

indicating that the turbulent diffusivities are contributed not only by the mechanical part v, ~ wl, but also by buoyancy.
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While the approximations
a 0

< ,9
0x; 0z

can be made in an ensemble average approach, they are evidently incorrect within the context of an LES where all the components
of U, and all the space dependence must be kept, for U; does not represent the external field but the one describing the large scales.
This makes the inversion of equations (C1)—(C4) a harder task, even with the help of symbolic algebra. Until that is done, we suggest
the use of a temporary intermediate solution between equations (C6) and (C10). The idea is to begin with the down-gradient
approximation as a zero-order solution (n = 0) to be substituted back into all the third-order moments appearing on the right sides
of equations (C1)—(C4). This will provide, without the need of a matrix inversion, a new set of third-order moments

wu,  wu 0, w6, (C13)

The calculation cannot, however, be stopped at this stage. In fact, one can notice that at this level of approximation, one would not
recover all the terms appearing in equation (C10): for example, the first third-order moment in equation (C13) would not contain the
last term in equation (C10), namely the gradient of the temperature variance, as one observes by inspecting the components of the
zero-order expression for u; u; 6. On the other hand, if one goes one step further, such a dependence is recovered.

Formally, the procedure can be written as follows: define

(C12)

Ci=u,6?, D=6°. (C14)

Ay = m > B;; = Ou;u; ,
Then we have from equation (C1),
Tt = Ak — 13(A% Uy, + perm.) + (1 — cy4)75(4; By + perm.) — (1/3¢g)(0;; Appi + perm.) (C15)

where the zeroth-order moments are defined as

—13 ' Af = wy 8%, u;u; + perm. , (C16)
ipo  —— O — 0 — — 0
—13 Bij=uiuka;0u,-+ujuka—n0u,~+0uka—nuiuj, (C17)
—3 (1 +213151)c?52§¢7j—a—9_;4i+mi¥, (C18)
0x; 0x;
—%‘fz;lm = 307,.6%0_. (C19)
Analogously, equation (C2) becomes with ¢, = 0,
By =By + Bty Afy — T3(Bi Ujs + B Usy) + 361103573 4 Cr + (1 — ¢44)13(4,C} + 4,C)) . (C20)
Equation (C3) becomes
Ci*' =CY + T[2B;B;; — CiU, ; + (1 — ¢;1)4; D], (C21)
where
T =14(1 + 213/19) 7" . (C22)
Finally, equation (C4) becomes
D"t = DO + (Bcg/e 0)ts BiCT . (C23)
The remaining third-order moments are determined by the relations
pu; = —Ciqu;, pB=—Cq0. (C24)
APPENDIX D

THE PARAMETERS

The constants are defined as follows:
1. Equations (27)—(28):

ck=ca+1—F'?, ca=14+62F(1—-F)>**, f,=15,
o =605, 3ou,=22—Tas), oa3=%, o,=7%5, 1005 =1+ £FY2 | oao=+
F=1+9II + 27III . (D1)
The invariants II and III are defined below (eq. [D8]).
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2. Constants entering the third-order moments (Appendix C):
cg=8, cpo=4, c¢y;=%, ¢, =0, D)
Cyr=C=3%.
3. The functions y’s entering equation (A41a) and (A42) (Shih & Shabbir 1992):
9y, = 6r* — 10 — Bs(r* — 1)~ 1[18(r + 1)rb + r¥(7 — 15r?) + 3611 — 10] , (D3)
9(r* — DIy, = r*(31I + 14) — 311 + 3) — 34* — B5[r?(1211 + 20) + 108IIrb + 10811 — 2111 — 5 — 15741 + 3II)], (D4)
y3= —1+ 4852 — 1)"}(12rb — 572 + 1211 — 1), (D5)
74 = —3Bs, 6Ilys = 7 + B5(3611 — 10), (D6)
where
2r* = Ou, Ou0%e)"t,  2rb = (%) 'Ou;0u,b,;, (D7)
—8¢’Il = b;;b;;, 24¢*111 = b,; by by, . (D8)

Using data from a buoyant plume experiment, Shih & Shabbir (1992) have determined that the value of 85 is approximately 0.6
which would correspond to ¢5 =1 — 5 = 0.4, a value close to 0.3 suggested in Paper I, equation (44d). In the same work, the
authors have also shown that y, is almost constant (~0.42), while y, ; , s are all negative, with values ranging as follows:

191 < |y,| <2.82,

028 < |y5] <07,

(D9)
0.81 <|yp,| <276, 095<|ys|<3.15.
4. The functions Bs, B,, and B, entering the nonlinear term Af;, equation (A29) (Shih & Shabbir 1992), are given by
Bs(611 — 10r2 — 361Irb) = — (1211 + 7)r? , (D10)
g, = —%+ 83 -1, (D11)
—Bo=PBs+B;. (D12)
5. Equation (19):
c, =144, c, =183, c;=182. (D13)
6. Equation (20):
1 Ko 2\
Eco=c€§, c(=n<3—K—0> s
Ko =16+ 0.02, Ba =1.34 +0.02, (D14)

where the value of Ko and Ba are taken from Andreas (1987).
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